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INTRO-
DUCTION





7While the scientific abstractions of climate change are 
often difficult to translate, the occurrence of extreme 
weather events are very real in the consciousness of the 
public. As extreme weather proliferates in its occurrence 
and intensity with climate change, there is an emerging 
awareness of not only the wide ranging impacts of climate 
change, but also the necessity to mitigate environmental 
risks; to develop a resiliency to the occurrence of those 
risks; and, to ultimately adapt our social, economic, and 
dependent environmental systems. This book provides a 
narrative for how the role of designers, and the inherently 
synthetic process of design, can be utilized in tandem 
with science, social science, and engineering to plan for 
and respond to extreme weather and climate change. 

As a proposal to construct an artificial archipelago 
of barrier islands to partially mitigate the impact of storm 
surge and sea level rise in the New York metropolitan 
region, Blue Dunes serves as a model for process 
innovation in transdisciplinary practices seeking regional 
connections beyond the boundaries of projects and 
programs. Through the case study of a high-profile public 
project, this narrative also includes the realities shaping 
the disagreements among relevant actors in terms of the 
path forward for defining the object of resilience and the 
nature of who bears the costs and the benefits of adapta-
tion. The point and counterpoint between positivism and 
post-positivism, and between art and science, give life to 
the nature of the complexity of adaptation in the built 
environment. These professional and disciplinary frictions 
shaped a design process that is the central tenet of this 
book. With the occurrence of Hurricane Sandy (Sandy), 
a new era in the American discourse for evaluating and 
preparing for extreme weather and climate change was 
ushered in. As such, Blue Dunes is merely a snapshot of 
a larger movement for seeking innovation, which cuts 
across the conventional boundaries of knowledge in the 
built and natural environments. 
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3Coastal Ocean 
Modeling: 
The Central 
Evidence  
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COMPUTATIONAL 
MODELING OF 
BARRIER ISLANDS

Given the nature of existing and future 
technologies, it was hypothesized that a set 
of offshore landscapes—barrier islands—in 
the coastal waters of the Mid-Atlantic region 
could be constructed in such a way that they 
would decrease the height of storm surges, 
and, therefore, could save lives, reduce 
damage, and safeguard the built environ-
ment. To test this hypothesis, a series of 
hydrodynamic simulations were conducted 
to look at new landscapes by using historical 
storm data in a storm-surge flood. 

Stevens Institute of Technology’s 
Davidson Laboratory (the Laboratory) 
created and maintains the New York 
Harbor Observing and Prediction System 
(NYHOPS), a vital forecasting resource for 
emergency preparedness in the metro 
New York City area and coastal New Jersey. 
The Laboratory operates in two primary 
areas: marine monitoring and forecasting 
and experimental and numerical marine 
hydrodynamics (i.e., ship design and eval-
uation). In October 2012, the Laboratory’s 
Sandy predictions proved accurate and 
vital, attracting the attention of CNN, The 
Weather Channel, and other national media. 
Research from the Laboratory has regu-
larly been referenced for the development, 
innovative infrastructure and coastline 
rebuilding solutions and assessments of the 
effectiveness of municipal shore protection 
initiatives, beach erosion mitigation plans, 
and zoning laws designed to prepare for 
future natural disasters. The Laboratory also 



works closely with the U.S. Department of 
Homeland Security (DHS), the Port Authority 
of NY and NJ, NJ Transit, and the National 
Oceanic and Atmospheric Administration 
(NOAA) on projects including modeling and 
forecasting of wind, tide, current, and wave 
conditions to better assist preparation for 
and response to storms, floods, accidents, 
and other emergencies on water.

MODELING APPROACH

The Laboratory uses a sophisticated set 
of three-dimensional and two-dimensional 
hydrodynamic models that are capable of 
producing the hydrodynamic estimates of 
the flood zones, peak flood levels, and wave 
heights for given scenarios, as well as flood 
exceedance statistics for coastal locations 
based on a large set of tropical and extra-
tropical storms. Models solve the system of 
hydrodynamic equations on a numerical grid 
(Blumberg & Mellor, 1987). Every experiment, 
such as a combination of a coastal modifica-
tion scenario and a storm, consists of tidal 
spin-up phase, which computes the proper 
tidal motion of the water, and the storm run, 
which adds atmospheric pressure and winds 
on top of the tide. The model computes the 
advancement and buildup of a storm tide 
and the inland propagation of water over the 
floodplain. At every grid node of the model, 
the maximal water level, or a peak flood, 
is computed over the course of numerical 
integration. This serves as a quantitative 
estimate of the extent of inland flooding, its 
horizontal spread, and vertical inundation. A 
comparison of the peak flood computed for 
a modified coastal scenario to the results of 
a base scenario provide an impact estimate 
of that modification and the capability of it 
to reduce and stop inundation in particular 
areas. An example of such an application 
is the flooding along the NJ Hudson River 
waterfront (Blumberg, et al., 2015). A new, 
high-resolution, hydrodynamic model that 
encompasses the Hudson River waterfront 
cities of Hoboken, Jersey City, Weehawken, 
and Bayonne has been developed and 
validated. Robust wetting and drying of 
land in the model physics provides for the 

■ Figure 54: ADCIRC Grid; FEMA setup ADCIRC + 
SWAN domain.

dynamic prediction of flood elevations and 
velocities across land features during inun-
dation events. Validation for Hurricane Sandy 
conditions against 56 water marks and 16 
edgemarks shows that the model is capable 
of computing overland water elevations quite 
accurately. Because the model was able to 
capture the spatial and temporal variation of 
water levels in the region observed during 
Hurricane Sandy, it was used to identify 
the flood pathways and suggest where flood 
preventing interventions could be built. 

MODEL SETUP

The model experiments in this study intro-
ducing various sets of barrier islands in the 
New York Bight utilized a vertically-integrated, 
two-dimensional, coupled modeling system 
based on ADCIRC (ADvanced CIRCulation 
model) and SWAN (Simulating Waves 
Nearshore) models (ADCIRC + SWAN). The 
model uses the FEMA Region II unstructured 
numerical grid with 604,790 nodes over the 
northwestern part of the Atlantic. Spatial 
resolution is variable and it is enhanced in the 
coastal New York / New Jersey regions where 
the distance between nodes can be as fine as 
70 m. ■ Figure 54 Floodplains (i.e., grid nodes 
on land that can be flooded) are incorporated 
with spatially varying bottom friction based 
on land use. Tidal forcing is defined by eight 



1
2

5

major short-period tidal constituents (K1, K2, 
M2, N2, O1, Q1, S2, and P1). Neither rainfall 
nor river runoff is included.

ADCIRC + SWAN (Version 49) is 
run on the Cray system Salk at the High-
Performance Computing Center (HPCC) at 
the College of Staten Island, City University 
of New York (CUNY). On average, one trop-
ical storm experiment takes about 20 hours 
of CPU time (including tidal spin-up) using 
256 cores available for this study. About 
200,000 CPU-hours were used to complete 
this study. Data for atmospheric pressure 
and winds was provided by Oceanweather, 
Inc. Model setup including base bathymetry, 
bottom friction, and all subgrid parameter-
izations is taken from FEMA Region II study 
by Risk Assessment, Mapping and Planning 
Partners (RAMPP, 2013).

MODEL VALIDATION

The FEMA Region II study has compiled a 
comprehensive model validation for a set 
of historical storms (RAMPP, 2013), including 
four tropical storms and three extra-tropical 
storms (nor’easters). These experiments, 
reproduced in this study, agreed for the most 
part with the FEMA results to the order of 
computer precision. An additional validation 
was conducted for Hurricane Sandy using 
atmospheric winds and pressure produced 
by Oceanweather, Inc. These fields come 
from Oceanweather’s proprietary atmospher-
ic boundary layer model, which assimilates 
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■ Figure 55: Modeled and observed water level at The Battery, NY, during the 2012 Superstorm Sandy 
(Stevens Institute of Technology, Davidson Laboratory, 2013; NOAA, 2012).

meteorological data. For this project, 
there was no separate validation study of 
atmospheric fields. Instead, the modeled sea 
levels were compared with existing data. 
The exact spatial distribution of land flooding 
from Sandy was not available at the time of 
this study, so the validation focused on sea 
level time series at NOAA recording buoys. 
In particular, The Battery location shows 
generally excellent consistency in timing, 
amplitude, and phase of the surge between 
the model (i.e., green curve) and historical 
data (i.e., black curve) on all stages of the 
storm (i.e., advance, peak, and retreat) 
■ Figure 55. The model overestimates the 
3.5 m flood peak at The Battery by 5%, 
which can be attributed to the up-scaling 
wind factor of 1.04 inherited from earlier 
modeling work. These discrepancies are 
clearly not important for this particular 
research, which focuses on the differences 
in flooding due to new barrier island 
construction. 

DESCRIPTION OF 
EXPERIMENTAL RESULTS

New artificial barrier islands are introduced 
by replacing the depths at corresponding 
ocean grid nodes in the model with +10 m 
elevation. Three storms were used in this 
analysis: (i) Hurricane Donna (September 
11–13, 1960); (ii) the 1992 Nor’easter 
(December 6–14, 1992); and (iii) Hurricane 
Sandy (October 25 – November 1, 2012). III
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1960 DONNA (September 11–13)  PEAK FLOOD

1992 NOR’EASTER (December 6–14)  PEAK FLOOD

2012 SANDY (October 25 – November 1)  PEAK FLOOD

Mid-Atlantic Bight Area New York Harbor Area

■ Figures 56, 57, 58: Peak flood maps resulting from Hurricane Donna (top); the 1992 Nor’easter (middle); 
and Hurricane Sandy (bottom) (Stevens Institute of Technology, Davidson Laboratory, 2013).
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2

7These three storms all had significant flood-
ing in the study area and represent tropical, 
extra-tropical, and hybrid systems. As a 
result, these storms were a good surrogate 
for a diverse range of future storms. The 
results from each of these storm events are 
shown in ■ Figures 56, 57, 58. 

A series of different barrier island configu-
rations were investigated in the search for 
the most effective configuration for reducing 
storm surge. The hypothetical configurations 
were as follows:

 × MODEL 1: This configuration completely 
closed the Sandy Hook to Rockaway 
transect. The model run allowed the team 
to study how much of the storm surge 
would be reflected back into the Atlantic 
Ocean, as well as the nature of flooding 
via the Long Island Sound. 

 × MODEL 2: This configuration closed Long 
Island Sound. This model run allowed 
the team to study how much of the storm 
surge comes in via the Sandy Hook to 
Rockaway transect.

 × MODEL 3: This configuration refined the 
NY Harbor protection and examined the 
blocking features along the NJ shore 
surge pathway.

 × MODEL 4: This configuration further 
refined the NY Harbor protection and 
examined the blocking features along 
the NJ shore surge pathway, as well as 
the islands’ capacity for reducing the 
exposure to the open ocean at the Sandy 
Hook-Rockaway Transect.

 × MODEL 5: This configuration further 
refined the NY Harbor protection and 
examined a reduction in exposure to 

    the open ocean

 × MODEL 6: This configuration evaluated 
the effect of blocking existing maritime 
transportation links along the NJ coast.

 × MODEL 7: This configuration evaluated 

the effect of blocking existing maritime 
transportation links along the Long Island 
coast.

 × MODEL 8: This configuration evaluated 
the performance of small block islands for 
deflecting storm surge.

 × MODEL 9: This configuration evaluated 
the performance of long slender islands 
along the coast in conjunction with small 
block islands.

 × MODEL 10: This configuration built on 
Model 9 and added dunes perpendicular 
to the Rockaway Peninsula and to Sandy 
Hook, in a north-south direction.

 × MODEL 11: This configuration evaluated a 
series of slender dunes along the coast of 
New Jersey with short curvature ‘hooks’ 
added at the entrance to the NY Harbor.

 × MODEL 12: This configuration evaluated 
long slender dunes along the coast from 
central Long Island to the entrance to 
the NY Harbor and at the entrance of the 
Long Island Sound. It removed the ‘hooks’ 
from the dunes in Model 11.

Of the configurations referenced above, 
four were chosen for further analysis: 
Model 8, Model 9, Model 10, and Model 11 

■ Figures 59–62. Graphical sets of outputs 
were created for each dune and island 
configuration. For each storm that ran on a 
modified bathymetry, the following outcomes 
were plotted: (i) peak flood maps from 
the base run; (ii) peak flood maps from 
the modified run; and (iii) the reduction of 
storm peak flooding due to modification. 
Peak flood maps show maximal sea surface 
elevation at each wet/flooded grid node 
during the storm. Peak reduction plots show 
the difference with the base run. Positive 
reduction (i.e., decrease in peak flood due 
to new islands) is shown in red colors and 
negative reduction is shown in blue colors. 
Plotted ranges are -0.5/+0.5 m except for 
-1/+1 m for final configuration run with 
Hurricanes Sandy and Donna. III
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GROUND LOSS ($M) INSURED LOSS ($M)

Before Mitigation 1,355 855

After Mitigation 967 619

GROUND LOSS ($M) INSURED LOSS ($M)

Before Mitigation 124 27

After Mitigation 56 13

■ Figure 82: 
Hoboken 
estimated 
loss reduction 
(AIR, 2014).

■ Figure 83: 
Hunts Point 
estimated 
loss reduction 
(AIR, 2014).
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■ Figure 84: 
Lower Manhattan 
estimated 
loss reduction 
(AIR, 2014).

■ Figure 85: 
Red Hook
estimated 
loss reduction 
(AIR, 2014).

GROUND LOSS ($M) INSURED LOSS ($M)

Before Mitigation 11,436 3,085

After Mitigation 5,469 1,272

GROUND LOSS ($M) INSURED LOSS ($M)

Before Mitigation 469 199

After Mitigation 257 102
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5Hurricane Sandy was the costliest extreme 
weather event ever to hit the urban centers on 
the East Coast of the United States. The cost 
of damage due to Sandy not only reflects the 
severity of the storm, but also the density and 
patterns of settlement that are prevalent along 
the coast, with populations, structures, and 
infrastructure at low elevations and within the 
existing floodplain. If current land use practices 
continue without regard to climate projections 
and the anticipated increase in the frequency 
of extreme weather in the coming decades and 
centuries, the New York City metropolitan region 
will continue to suffer debilitating physical, 
financial, and social consequences with each 
storm event.

As a flood event, Hurricane Sandy exposed the 
inadequacy of existing flood defense measures 
and codes. It was determined that 650,000 
housing units were damaged because they 
were built prior to the advent of flood-related 
building codes, and with ground floors below 
current base flood elevations. At the same time, 
financial coverage faltered because thousands 
of homeowners lacked insurance. The lives 
lost and the nearly $110 billion in physical and 
economic damage demonstrate the high cost 
of complacency.  
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■ Figure 1: Aerial view of 
Sandy Hook and New York 
Harbor (Albert Vecerka / 
ESTO, 2016).
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■ Figure 4: A new conceptual model for 
fl ood defense: a multi-layered approach 
(WXY / West 8, 2014).
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Water does not respect political boundaries. 
A regional approach to climate change and 
sea level rise is critical to the safety and well-
being of local communities. Comprehensive 
models that share information about social and 
environmental risks and benefits might make 
it possible to reduce the impact of storms and 
simultaneously restore ecological strata lost 
over the last century. A new regional framework 
for systems of insurance, governance, and 
coastal management that utilizes pooled 
resources could promote a broader ambition 
for economic adaptation. 

However, flood risk reduction cannot succeed 
without an understanding of individuals’ 
experiences during and following Sandy, as 
well as the need for human-scale interventions. 
Since the hurricane, residents and business 
owners in the coastal floodplain have 
discovered a new sense of environment, and 
have made adjustments in preparation for 
the next big storm. Programs that support 
social networks and tangibly reduce the risks 
for vulnerable residents and businesses are 
critical to the future of the Northeast.
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■ Figure 12: Aerial perspective of the New York Bight 
with a first phase of artificial barrier island construction 
(WXY / West 8, 2013).
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■ Figure 13: Aerial perspective of the New York Bight 
with mature artificial barrier islands; all phases of 
construction complete (WXY / West 8, 2013).
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■ Figure 14: The Blue Dunes 
final concept plan, Phase 1 
(WXY / West 8, 2014).



2
1

9

The first phase of the Blue Dunes would aim to 
mitigate storm surge for coastal northern New 
Jersey, the urbanized edges of the New York 
Harbor, and the western portion of Long Island. 
The overall island plan configuration responds to 
coastal habitat and ocean depths, optimized for 
ecological and environmental benefits.



Clapper rail Little blue heron Screech owl
Atlantic 
ghost crabWillet

■ Figure 24: Section-perspective of the Blue Dunes island morphology and animal inhabitants, 
looking toward the New York–New Jersey Harbor (WXY, 2016; base photo: Albert Vecerka / ESTO).



Oyster catcher Sanderlings Short-billed dowitcher Atlantic croaker



Coupling the construction of barrier 
islands with wind turbines represents one 
way to expand the benefits of making 
an unprecedented regional investment. 

Jacobson, Archer, and Kempton’s 
research suggests that offshore turbine 
arrays could reduce hurricane wind 
speeds, in addition to providing clean 
energy—a doubly-effective climate 
mitigation strategy (2014).

■ Figure 26: Harnessing the wind: 
detailed rendering of an artificial island 
in the context of wind turbines and 
surfers (WXY, 2015).
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The Blue Dunes topography in 
the context of the New York Bight 
(WXY / West 8, 2014).      
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of motion (Blumberg, Stevens 
Institute of Technology, 2013).

9 Happy Isles plan (West 8 & 
Svasek Hydraulics, Coastal, 
Harbour & River Engineering 
Consultants, 2006).

10 Prototypical Blue Dunes 
island for the Mid-Atlantic 
coast (WXY / West 8, 2014).

11 Polder landscape with 
windmill near Abcoude 
(Polderlandschap met molen 
bij Abcoude), collection of 
the Gemeentemuseum Den 
Haag. As appears in the 
publication Mosaics: West 8 
(Willem Roelofs, circa 1870; 
oil on canvas).

12 Blue Dunes marsh landscape 
perspective (WXY / West 8, 
2014).

13 Hurricane Sandy New 
York City inundation area 
compared with the 1983 
FEMA 100-year floodplain 

maps, still in effect in 2012 
(WXY, 2016; data source: 
FEMA 1983 FIRM & MOTF 
11/6 Hindcast surge extent, 
2012).

14 Transmitter Park and Pier 
conceptual rendering; view 
from the East River (WXY, 
2008).

15 Transmitter Park & Pier, 
aerial view of the new pier 
and natural shoreline (Paul 
Warchol, 2013).

16 Transmitter Park & Pier 
during Hurricane Sandy 
(Andrew Kenney, 2012).

17 Transmitter Park & Pier, view 
of the pier (Paul Warchol, 
2013).

18 Rendering of a proposed 
storm surge barrier for 
Newtown Creek (NYC 
Mayor’s Office, 2013).

19 Commercial on-street 
challenges for flood 
protection (WXY, 2015).

20 Visualizing the 100-year 
flood (plus 3 feet of sea level 
rise) on a commercial street 
(WXY, 2015).

21 FAR ROC competition, 
dunes as safe haven (West 
8, WXY, LEVENBETTS, and 
Bernheimer Architecture, 
2013).

22 FAR ROC competition, 
dunes as safe haven (West 
8, WXY, LEVENBETTS, and 
Bernheimer Architecture, 
2013).

23 FAR ROC competition, 
dunes as safe haven (West 
8, WXY, LEVENBETTS, and 
Bernheimer Architecture, 
2013).

24 Aerial perspective of the Bay 
Side Nature Trail from the 
Rockaway Parks Conceptual 
Plan (WXY, 2013).

25 Ground level perspective 
of the Bay Side Nature Trail 
from the Rockaway Parks 
Conceptual Plan (WXY, 2013).

26 A proposal to integrate flood 
defenses into new public 
amenities with a multi-
purpose levee (WE Design 

 for Brooklyn Greenway 
Initiative, 2014).

27 Red Hook temporary flood 
wall (NYC Mayor’s Office, 
2013).

28 Coastal watersheds and 
political jurisdictions (WXY / 
West 8, 2013).

29 Comprehensive Coastal 
Protection Plan, Full-Build 
Recommendations (NYC 
Mayor’s Office, 2013).

30 Hurricane strikes to New 
York and New Jersey (WXY, 
2016; data source: Entergy 
Nuclear Northeast, 2013).

31 Scheldt Landscape Park 
(West 8, 2008).

32 Conceptual rendering of a 
surge barrier parallel to the 
Verrazano Narrows Bridge 
(Arcadis, 2009).

33 Informative signage (Yeju 
Choi / WXY, 2013).

34 Hoboken flooding analysis 
(Stevens Institute of 
Technology, Davidson 
Laboratory, 2012).

III — REGIONAL METHODS & 
ANALYSES       

1 Governors Island concept 
massing from West 8’s 
competition proposal     
(West 8, 2007).

2 Governors Island rendering 
of the promenade from West 
8’s competition proposal 
(West 8, 2007).

3 Governors Island rendering 
of The Hills from West 
8’s competition proposal     
(West 8, 2007).

4 Governors Island sections, 
describing strategies for 
filling and raising new 
parkland (West 8, 2007).

5 Governors Island, phase one 
under construction (Iwan 
Baan / West 8, 2014).

6 Governors Island’s The Hills 
under construction (Timothy 
Schenck / West 8, 2015).

7 The Hills in the context of 
New York Harbor (Timothy 
Schenck / West 8, 2016).

8 The proposal for Lower 
Manhattan reconceived the 
relationship between the city V
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Blue Dunes chronicles the design of artificial barrier 
islands developed to protect the Mid-Atlantic region of 
North America in the face of climate change. It narrates 
the complex and sometimes contradictory research 
agenda of an unlikely team of analysts, architects, 
ecologists, engineers, physicists, and planners addressing 
extreme weather and sea level rise within the practical 
limitations of science, politics, and economics.




